## DPASRCNRS

- Queues ' $n$ Stacks
- Tries, Suffix Trees
- Heaps
- Sieve of Eratosthenes


# CHISINEAS 

## DESCRIPTION and IMPLEMENTATION



Operations: Add/Remove

## Qinisinias

Uses: Many!

Queues / Stacks
-FIFO / FILO
-BFS / DFS

Search Tree Depth
Queue = Shallow
Stack = Deep

## Cilinsids

Example<br>IOl'96 Day 2<br>Problem 3: Magic Squares

$$
|1| 2|3| 4 \mid
$$

$|8| 7|6| 5 \mid$

- 'A': Exchange the top and bottom row,
- 'B': Single right circular shifting of the rectangle,
- 'C': Single clockwise rotation of the middle four squares.


## Qilisinids

## Extra

Implementation: Dynamic vs. Static

## 7:

## DESCRIPTION and IMPLEMENTATION

Operations: Create
Search
Walk


To
Tell
Tent

## SHPXPEES

## DESCRIPTION and IMPLEMENTATION

Operations: Create
Search


Suffix Tree: Cat

## TiskSHMA:

- String Questions!

Uses:

- Find all occurrences of a substring in a string
- Longest substring common to a set of strings
- Longest Palindrome in a string
- Sorting of a dictionary
- Fast searching of a dictionary!


## 7. 5

## Example

IOI'98 Day 1 Problem 1: Contact

IOI'96 Day 2
Problem 2: Longest Prefix
IOl'95 Extra Problems
Problem 1: Word Chains
A list of one or more words is called a chain when each word in that list, except the first, is obtained from the preceding word by appending one or more letters on the right. For instance, the list:

## i

in
int
integer
is a chain of four words, but the list
input
integer
is not a chain. Note that every list of one word is a chain.

## FIPS

## Description and Implementation

An element at position $X$ :
Parent: Truncate(X/2)
Children: $\left(2^{*} X\right)$ and $\left(2^{*} X+1\right)$


25968

## FFAPS

## Heap Insert and Delete

Insert:

- Place the node at the bottom of the heap
- If it's smaller than it's parent swap the two.
- Rinse, repeat

Delete:

- Replace the node to be deleted with the node from the bottom of the heap.
- If this node if greater than either of it children swap it with the smaller of them
- Rinse, repeat


## HFPS

Uses:
To repeatedly Find the Minimum or Maximum of a set of Dynamic Values
Dijkstra's Algorithm!
Krusal's MST Algorithm!

## FFPS

Example<br>IOI'95 Day 1<br>Problem 2:Shopping Offers

Given a set of items (up to 5 ) and their individual prices, and a set of special offers (up to 99) : 3 of item A plus 2 of item B for a certain price. Find the minimum cost to purchase a certain amount (up to 5) of each items.

Shortest Path Problem
Vertices: 6*6**6*6 = 7776
Edges: $99+5=104$

Dijkstra's Algorithm Standard: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ ~ $\mathrm{O}(60000000)$
Dijkstra's Algorithm Heap: 0((E+V) log N) ~ O(30000)

## SEECFRTSEANB

## Use:

Fast primality testing for a range of numbers:

```
(*- Sieve of Eratosthenes *)
For I := 2 To MAX Do
    If (Prime[l]) Then
    Begin
    J := I;
    While J*| <= N Do
    Begin
    Prime[|*]] := False;
    J:= J + 1;
    End;
    End;
(* Sieve of Eratosthenes -*)
```


## SBECFRRTSEMA

## Example

IOl'94 Day 1<br>Problem 3: The Primes

- Given two integers $A$ and $B$, output all $5 x 5$ squares of single digits such that:
- Each row, each column and the two diagonals can be read as a five digit prime number. The rows are read from left to right. The columns are read from top to bottom. Both diagonals are read from left to right.
- The prime numbers must have a given digit sum " $A$ ".
- The digit in the top left-hand corner of the square is " $B$ ".
- A prime number may be used more than once in the same square.
- If there are several solutions, all must be presented.
- A five digit prime number cannot begin with zeros, ie 00003 is NOT a five digit prime number.

$$
\begin{array}{ll}
\text { Input: } & 11351 \\
A=11 & 14033 \\
B=1 & 30323 \\
53201
\end{array}
$$

return 0;
\}

